
Context-Driven Predictions

Marc G. Bellemare and Doina Precup
McGill University

School of Computer Science
{mgendr12,dprecup}@cs.mcgill.ca

Keywords: Prediction learning, associative memories,
context-based model

Abstract
Markov models have been a keystone in Artificial
Intelligence for many decades. However, they re-
main unsatisfactory when the environment mod-
elled is partially observable. There are pathological
examples where no history of fixed length is suf-
ficient for accurate prediction or decision making.
On the other hand, working with a hidden state (like
in Hidden Markov Models or Partially Observable
Markov Decision Processes) has a high computa-
tional cost. In order to circumvent this problem,
we suggest the use of a context-based model. Our
approach replaces strict transition probabilities by
influences on transitions. The method proposed
provides a trade-off between a fully and partially
observable model. We also discuss the capacity
of our framework to model hierarchical knowledge
and abstraction. Simple examples are given in or-
der to show the advantages of the algorithm.

1 Introduction
The ability to predict future events is a necessary compo-
nent of intelligent agents, as it facilitates accurate planning.
A standard approach is to predict the future solely through
observations, for example using a fixed-order model Markov
Chain. Unfortunately, a history of any fixed length might
not be sufficient to accurately predict the next observation.
Methods using a variable history window (e.g. McCallum,
1995) work well in practice but are largely heuristic. A
different approach for making predictions through time is
to introduce a notion of latent or hidden state of the en-
vironment, as in Hidden Markov Models [Rabiner, 1989]
and Partially Observable Markov Decision Processes [Kael-
bling et al., 1998]. Such models clearly separate observa-
tions from hidden states, and keep track of the current state
through a belief vector. However, assuming a hidden state
requires knowledge about it, and often the state transition
probabilities are assumed to be known. For learning agents,
this approach appears restrictive: knowledge is necessarily
bounded by the state representation. Furthermore, the true
state of the system may involve many elements which are

not observable by the agent for long periods of time. One
may imagine, for example, an environment divided into re-
gions where certain observations only appear in certain re-
gions. Objects which evolve in the world also involve keep-
ing track of additional state information about them. Recent
work on predictive representations [Sutton and Tanner, 2005;
Littman et al., 2002] aims to bridge this gap by explicitly con-
structing a state, which is a sufficient statistic for predicting
the future, from the experience of the agent.

The goal of our work is also to build a predictive represen-
tation which is not based on a fixed length of history and can
be learned incrementally from data. Specifically, our work is
geared towards environments where observations are subjec-
tive. In such systems, we can hope that the only state the agent
needs to be concerned about is based on what is directly ac-
cessible to it. More formally, this would be observations that
lead to better predictions of the immediate future. Our work
is based on hetero-associative memories, such as Sparse Dis-
tributed Memories [Kanerva, 1993], but puts the emphasis on
predicting future events rather than as a way of palliating to
noisy inputs. Our model can also handle new observations
and can generalize to a certain extent, as there is no neces-
sity for model specification in advance beyond defining the
observation features. In this paper we do not explicitly dis-
cuss planning and rewards, but assume that predictions can
be used to determine actions.

Similar problems have been explored in the connectionist
literature. For example, [Elman, 1990] considers the notion
of context in a neural network as being closely related to the
previous state of the system. Through simple tasks, he shows
that a recurrent neural network can learn to base its predic-
tions on past inputs summarized in its hidden units’ activa-
tion. Research on a symbol prediction task close to ours has
been described in [Bose et al., 2005]. However, they take
a neural network approach to the problem and focus on a
particular kind of network architecture and implementation.
Recently, Boltzmann machines have been used for prediction
through time as well [Taylor et al., 2007]. Our proposed algo-
rithm is significantly different from those mentioned above:
we focus on weighting past observations in a direct fashion
rather than through an internal state of the agent. A simi-
lar prediction task is addressed in [Gopalratnam and Cook,
2007], in the context of text parsing. However, in their ap-
proach all data structures are geared towards dealing with



symbols. Our approach works both for discrete and contin-
uous observations (although our experiments contain discrete
observations only).

The paper is organized as follows. In Section 2 we briefly
review Sparse Distributed Memories, on which we based our
ideas. We also discuss Hopfield networks and Boltzmann Ma-
chines and the benefits of Sparse Distributed Memories over
them. In Section 3, we formally define our framework. Fol-
lowing this, we discuss a simple algorithm for learning from
observations in Section 4. We then give examples showing
the predictive power of the algorithm in Section 5. Finally,
Section 6 discusses the sort of environments for which our
method is suitable, its current failings compared to existing
models and how it may be used to obtain abstraction.

2 Background
Sparse Distributed Memories (SDMs) were developed in or-
der to model long-term memory [Kanerva, 1993]. Of interest
is the capacity of such memories to both retrieve a noise-free
version of an input vector (auto-association) and to retrieve an
associated output vector (hetero-association). As opposed to
other types of associative memories, SDMs do not require an
iterative process in order to converge to the desired answer. In
that respect, they resemble feed-forward neural networks, and
have been modelled as such. SDMs have been used in pre-
diction, for example for robot navigation [Rao and Fuentes,
1996].

A SDM is divided into two parts: the hard locations and
the output words. A hard location is simply a binary vector
of the same length as the input vector. To each hard location
corresponds an output word which is composed of an integer-
valued vector, possibly of different length.

When a vector is given as input to the memory, its distance
di to each hard location i is computed; in the original imple-
mentation, di is simply a Hamming distance. The output of
the system is then obtained in the following way: for each
hard location with distance di ≤ δ, where δ is a threshold
value, its corresponding word is added to the output sum s.
The actual output o is found by thresholding the sum such
that oi = 1 if si > 0, and oi = 0 otherwise.

Learning in SDMs is fairly straightforward. When we wish
to map an input v to a target word z, we determine which hard
locations are activated (di ≤ δ) by v. For each of these, we
add z to their corresponding output word.

If the hard locations are orthogonal, we obtain something
very close to a linear approximator. Such systems have been
studied extensively, for example as associative search net-
works [Barto et al., 1981]. If the hard locations are not or-
thogonal, however, the memory potentially gains in general-
ization capacity by producing more complex combinations of
mappings. Various works on SDMs have experimented with
extending the system to handle real values, computing its ca-
pacity, and deciding how to craft the hard locations to bet-
ter suit a given task. Presented as above, SDMs are interest-
ing as they propose an intuitive coverage of the input space
through actual potential inputs (work on this idea in rein-
forcement learning was done in [Ratitch and Precup, 2004]).
Their hetero-associative capacity also makes them promising

for prediction purposes.
Other associative memory frameworks have been proposed

before SDMs. Among those still used today, we find Hop-
field networks [Hopfield, 1982] and Boltzmann Machines
[Fahlman et al., 1983]. Both rely on the idea of neuron-
like elements that share undirected connections with their
neighbors. In the simplest version, each element has two
states. With each undirected connection is associated a
weight, which influences the corresponding neighbor into be-
ing in a certain state, based on the weight sign. Usually, a
positive weight indicates that both units should be in the same
state, whereas a negative weight indicates they should take
different states. The system then attempts to minimize its en-
ergy. This energy increases when units of the system take
states that violate the influence of their connection weight.

Inputs can be given to these algorithms by forcing certain
elements to stay in a given state, for example by explicitly
defining input units with fixed values. Since both algorithms
are undirected by nature, obtaining a minimum energy state (a
solution) requires iterating over the unit states until the energy
stagnates. Unfortunately, this process can be slow. Learning
in such a model is also computationally expensive, although
Restricted Boltzmann Machines have recently been used to
achieve good results [Hinton et al., 2006].

3 Framework
Unfortunately, SDMs suffer from a big disadvantage. They
are, by nature, deterministically noise-correcting and do not
allow us to predict events that may occur. Before we discuss
our proposed framework, we must make a few assumptions
regarding the environment that we are interested in modelling
and define a few terms. First, let us define a percept as a
real-valued vector representing an observation. Secondly, we
assume that association is not done on a one-to-one basis.
Rather, a given percept may be associated to many other per-
cepts, with different strengths of association for each. We
formalize this by proposing that an input percept p maps to a
distribution over associated percepts.

We define the memory as a set of cells, C. Each of these
cells acts as a hard location, and therefore has a single per-
cept associated with it, which we denote Ci through nota-
tional abuse. Each cell also has a saliency value si associated
with it and a vector of output weights, Wi. Wi represents
directed associations between cells, and so Wi has the same
size as C. In general, we denote the weight matrix W and the
saliency vector corresponding to C, s.

When the system is presented with an input percept p, it
computes an activation vector α similar to the activation in
SDMs. Here however, α is a real-valued vector with elements
taking values between 0 and 1, where αi = 1 indicates a
perfect match between p and Ci and αi = 0 indicates no
match. Usually, we would like

∑
i αi = 1. In our work,

we use the simplest activation function, namely αi = 1 if
Ci = p, and αi = 0 otherwise. In effect, we are assuming
that percepts are actually symbolic and not subject to noise;
this need not be the case in general.

By themselves, SDMs do not allow any association based
on past observations. To circumvent this, we use the saliency



value of cells as an activation trace. More formally, at every
time step we set the saliency vector to

s← γs + α

This is similar to the cumulative eligibility trace in rein-
forcement learning [Sutton, 1988], where γ is a decay factor.
A restricted form of this type of encoding has also been used
for prediction in [Bose et al., 2005; Furber et al., 2004]. If
αi = 1 for exactly one percept and 0 everywhere else, s rep-
resents the past sequence of observations, provided no per-
cept has been observed twice. Note that for the purposes of
the system, s does not need to be an exponentially decaying
trace of observations; its goal is to serve as context to obtain
better predictions. In Section 6 we will discuss one possible
way of improving the above equation.

Our algorithm diverges from SDMs as it attempts to predict
percepts that match its hard locations, rather than separating
them from the output words. We define secondary activation,
denoted by β, as a vector representing a prediction weight
for each cell. We are interested in predicting which of the
percepts (represented by cells) may be observed. We assume
here that the hard locations represent actual percepts. We then
compute β as

β = W s
From this equation one can notice that the weight matrix in-
deed acts as a set of associations; experiencing a percept leads
to related percepts being predicted.

At the very least the values of β should be in the correct
prediction order and significantly different. Any function of
β which preserves this ordering and results in a valid proba-
bility distribution may be used to predict the next time step.
We chose to use a simple Boltzmann distribution using β and
given by:

P (Ci|s) =
eτβi∑
i eτβi

The distribution’s entropy is controlled by τ , a standard tem-
perature parameter between 0 and∞. In the experiments we
used τ = 1 but other values may yield better results.

4 Learning
After having discussed how the algorithm predicts events,
we now describe how learning can be accomplished. Log-
ically, since we use the saliency vector s as contextual hints
which allow us to make a better prediction, we should modify
weights based on s.

For now, assume that we already have a known set of hard
locations. Let pt be the percept observed at time t, and sim-
ilarly Ct, the set of cells, W t the weight matrix and st the
saliency vector. We denote the activation due to pt by α(pt).

Assuming that we want to predict pt in the future when s is
present, we should modify W t to produce a probability dis-
tribution similar to α(pt). Formally, let π be our probability
distribution on C; we define the prediction error E as:

E =
1
2

∑
i

(πi − αi)2

where αi is the ith component of α(pt). We then compute
the gradient of the error with respect to Wi,j , the jth weight

1. Initialize hard locations
2. W ← 0
3. For each episode do
4. s← 0
5. Repeat until done
6. Compute π from s
7. Observe the next percept p
8. Update W based on π − α(p)
9. s← γs + α(p)

Table 1: Our context-based prediction algorithm.

of cell i. Here Wi,j represents how strongly j influences the
prediction of i.

Let σ =
∑

i eτβi , and recall that βk =
∑

i Wk,isi. First
note that:

∂

∂Wi,j
πk =

∂

∂Wi,j

eτβk

σ
=

τeτβk

σ2

(
σ

∂

∂Wi,j
βk − eτβisj

)
=

{
τsjπk(1− πk) if k = i
−τsjπkπi otherwise

Let ε be the vector of errors, with εi = πi − αi. From the
above equation we obtain:

∂

∂Wi,j
E =

∑
k

(πk − αk)
∂

∂Wi,j
πk

= τsj(πi(1− πi)(πi − αi)−
∑
k 6=i

πiπk(πk − αk))

= τsjπi((1− πi)εi −
∑
k 6=i

πkεk)

= τsjπi(εi − π · ε)

We can then modify the output weights through a standard
update rule with learning rate c ∈ (0, 1):

Wi,j ←Wi,j − c
∂

∂Wi,j
E

Usually, probability-producing systems are trained using a
likelihood-based gradient. Here, however, there are two rea-
sons why we might prefer to use the sum of squared errors
to compute the gradient. First, it explicitly allows us to train
the system to output a combination of hard locations, through
the α vector. This can be interesting if many percepts acti-
vate two or three hard locations due to noise. Also, we are
interested in good generalization capabilities. Experiments in
which we used maximum likelihood gave worse results. We
believe that is might due to the fact that there is no ’ground
truth’ distribution which we are approximating; instead, we
are constructing an appropriate distribution through associa-
tion.

There is a second learning problem, which we ignore here,
but is of interest. The hard locations do not have to be pre-
defined, or fixed. In a way, learning to recognize a percept can
be just as hard as prediction. We discuss this issue further in
Section 6 below. The whole algorithm is presented in Table
1.



Episodes 40 80 400 800
P(1)=0.5 P(1) 0.41 0.43 0.45 0.45

P(2) 0.46 0.48 0.51 0.51
P(1)=0.75 P(1) 0.69 0.72 0.73 0.73

P(2) 0.20 0.20 0.23 0.24
P(1)=0.875 P(1) 0.79 0.84 0.86 0.86

P(2) 0.12 0.10 0.10 0.11

Table 2: Predicted observation frequencies based on the num-
ber of training episodes.

5 Examples
In this section we give examples in order to show that our
proposed algorithm can indeed perform prediction in a simi-
lar fashion to that of a strict Markovian Model, without being
restricted by a fixed history length or states. For all of the ex-
amples, we use sequences of numbers as observations. Each
number is encoded as a n-sized vector with the corresponding
bit set to 1 and all others set to 0; n is the maximum number of
observations. Note that in a more natural task a percept vec-
tor may represent sensory input, and so its structure would be
well-defined. To simplify matters, we assume that the agent
always receives the percept 0 (first bit set to 1) at the begin-
ning of each episode, and never receives it during the episode.
This is similar to defining a special start symbol when learn-
ing a kth order Markov Model, and we would expect this to
have little impact in a system that learns continuously. Here
we are using a learning rate of 0.5, which gave sufficiently
stable results. The decay factor γ was also arbitrarily set to
0.5.

The first experiment is the simplest one, and shows that
the system can approximate symbol frequencies. We simply
produce two separate one-observation episodes with certain
frequencies. One of these episodes produces a 1, while the
other produces a 2. In order to avoid variance in the results,
we chose to use a fixed sequence of episodes. These always
start with 1, end in 2 and episodes containing 2’s are experi-
enced at regular intervals in-between. Estimated frequencies
are given in Table 2, where we show the probability of each
event after a certain number of training episodes. Actual fre-
quencies are given on the left-hand side. Note that the given
probabilities do not sum to one due to the Boltzmann distribu-
tion: it assigns a non-zero probability to all events, and here
0 is predicted as unlikely but not impossible. We can see that
with sufficient training, all estimates converge towards their
true values. The learning rate here prevents us from obtaining
the exact probabilities as the output weights oscillate between
episodes.

The second experiment is aimed at showing that the sys-
tem, despite having no explicit indication of ordering, can in
fact discriminate based on recency. The example strings that
we use are respectively 123 and 214. The goal here is to show
that we can predict with high probability which of the two end
symbols will appear based on ordering. Results are given in
Table 3.

Clearly as the number of training iterations increases the
system becomes able to more precisely predict the true sym-
bol based on context. Again here, the symbols 0, 1 and 2

Episodes 50 100 200 500
Context 1,2 P(3|12) 0.46 0.61 0.74 0.85

P(4|12) 0.24 0.19 0.13 0.075
Context 2,1 P(3|21) 0.21 0.17 0.12 0.07

P(4|21) 0.50 0.64 0.75 0.855

Table 3: Predicted observation based on order of past obser-
vations.

Episodes 100 200 500 1000 2000
Sequence pairs

618 0.77 0.86 0.92 0.95 0.96
719 0.78 0.86 0.92 0.95 0.96

6128 0.59 0.74 0.86 0.90 0.935
7129 0.62 0.75 0.86 0.905 0.935

61238 0.44 0.55 0.71 0.80 0.87
71239 0.50 0.60 0.74 0.82 0.88

612348 0.40 0.44 0.53 0.63 0.73
712349 0.46 0.51 0.60 0.68 0.75

6123458 0.39 0.42 0.45 0.49 0.55
7123459 0.45 0.48 0.525 0.57 0.62

Table 4: Predicted observation based on long-term context.
Values in italic show when the actual observation was not pre-
dicted with the highest probability.

are also predicted with probabilities that decrease as training
increases. If we were only interested in predicting the end
symbol, we could increase τ to obtain higher probabilities.
With our choice of parameters, the initial symbol (1 or 2) is
predicted to occur with roughly 50% chance, as in the first
experiment.

The third set of sequences that we looked at shows that the
system can learn to use context from any point in the past to
differentiate two predictions. More specifically, we have two
target symbols (8 and 9) which can only be predicted based
on the first symbol that occurs, which is either a 6 or a 7. The
training strings and the predicted probability of the correct
symbol are reported in Table 4.

As can be seen from this table, the system follows a slow
degradation in predicting the correct event as the differenti-
ating observation becomes more remote. The fact that 9 is
systematically predicted with higher probability than 8 is an
artefact of our experiment, due to the sequence containing
9 being presented after the sequence containing 8. It is in-
teresting to note that for the longest example given here, the
saliency of the context percept at the time of prediction is 2−5.
Yet it can be seen that as the number of iterations increases,
the algorithm learns to correctly distinguish between the two
events.

6 Discussion
The framework presented seems to provide us with a way of
predicting events which, if not perfectly accurate, is not sub-
ject to history length constraints and does not require explicit
state knowledge. Of chief interest is the fact that the algo-
rithm, as shown above, can handle temporal ordering, which



can be key to many predictions. However, it can also han-
dle predicting observations from unordered sequences. As a
brief example, we can imagine an environment where we ob-
tain clues about the ’state’ of the world, which is represented
by a separate percept (possibly one that occurs often while
in that ’state’). Markov Models relying on a strict order of
observations will need many samples to produce clear pre-
dictions. Our algorithm, on the other hand, can infer from
many weak clues a more general percept.

Of a technical nature, both the saliency vector and the
weight updating scheme are flexible and may be modified to
fit different situations. For example, we experimented with
modifying the saliency vector to keep relevant percepts in
context and remove more quickly irrelevant ones. This can
be easily done by considering the gradient of the error on the
current prediction with respect to the saliency of each cell; the
update rule is then very similar to the one used for the output
weights. The weight updating scheme may also be improved
by preventing negative gradients. Currently, our weight up-
date rule reduces the probability of all the events that did not
occur (αi = 0) at the same time as it increases the probability
of the actual observation. This might hinder later learning; a
purely additive approach, closer to a frequency-based model,
might perform better.

Obviously, being able to predict events more or less accu-
rately is not sufficient for an agent; we also need correct con-
trol. From a reinforcement learning point of view, we can nat-
urally incorporate reward into our framework in three specific
ways. First, we can explicitly attempt to assign a value to each
observation, and compute the predicted expected value based
on context. A similar idea was developed in [Ratitch and
Precup, 2004], but their algorithm did not explicitly model
observation prediction, and was done in a fully observable
framework. We can also modify the weight update rule to use
the magnitude of rewards to focus learning on important parts
of the system. More interestingly, though, we can modify the
saliency vector based on reward information, so that a percept
which is known to be associated with high reward or penalty
might be kept in context longer.

In the case of a truly stochastic event, similar to what we
presented in the first experiment of Section 5, our predic-
tion will, by definition, never be accurate. This is in some
sense a drawback of the algorithm: transitions are expected
be fully determined by some past event. There are many ways
to address this problem. First, we can assume that no event
is truly stochastic in nature, and that stochasticity only ap-
pears through lack of contextual information. In such a case,
we could try inferring missing past events by increasing the
saliency of percepts which usually cause the current observa-
tion. Another approach would be to explicitly consider the
variance of a prediction. Qualitatively, large output weights
suggest strong evidence towards a prediction. If more than
one event is strongly activated by context, then there is reason
to believe that stochasticity will appear in the observations.

One question that has been largely ignored so far in this pa-
per is that of handling percepts which occur more than once
in a short interval of time. Since the algorithm has no way of
specifying that an observation has occurred twice, we lose the
capacity of a kth order model to make a separate prediction

when this happens. This may be seen as a failure of the frame-
work, and indeed it is not suited for environments where there
are very few observations. However, if we consider that the
algorithm builds a causality link from a percept to another,
then the problem may be solved in the following way. The
repeated occurrence of a percept does not provide additional
information; it instead becomes a question of the duration of
the observation. Our framework implicitly handles duration
if we do not allow non-zero output weights from a cell to it-
self. Indeed, the output weights to the context should become
larger in order to accurately predict an event which occurs
for a longer period of time, and therefore such events should
be predicted even when the relevant contextual information is
further in the past.

We purposefully left out the recognition problem in our
presentation of the algorithm. Constructing suitable hard lo-
cations might not be simple. However, our framework im-
plicitly proposes a different approach to recognition. A set
of temporally or spatially related percepts may all be associ-
ated together to form a single, more abstract object. This can
be the case in Computer Vision for example, where multiple
poses are mapped to be same object.

In a similar fashion, the algorithm is not restricted to a sin-
gle modality. We have extended it to include multiple modal-
ities which are associated together. Although a separate pre-
diction is made for each modality, context is constituted of all
modalities. Such a capacity opens many opportunities, such
as building knowledge through associations across modali-
ties. Among the most striking is the possibility to link per-
ceptual knowledge to actions if both are represented in the
associative framework proposed.

The discussion above suggests the use of actual percepts as
abstraction, ie. strong contextual clues. An abstract percept
may be one that activates its instances, for example the idea
of a tree may simply be a cartoon tree, which then maps to
all other kinds of trees. What is interesting here is that con-
sidering an abstract object as a regular percept allows us to
manipulate it atomically, without regard for its abstract na-
ture. Having atomic abstractions in turn allows us to abstract
them, and gives us the capacity to build hierarchical knowl-
edge without any additional apparatus.

Past research on association and prediction has mainly fo-
cused on obtaining averages of noisy observations. The nov-
elty in our approach comes from the fact that we put the em-
phasis on the importance of associations between incomplete
observations. As such, our framework takes a radically differ-
ent view of perceptions: noise can be overcome through the
association of noisy signals. All the associative memories dis-
cussed above share the fault that they are geared towards pro-
ducing an ideal output. Rather, we hope that our framework
can build many (possibly noisy) associations which, when
combined, yield a correct answer. This is something that can
only be done if we can produce a probability distribution over
associations; we also need to be able to use events from any
time in the past. Our algorithm, by achieving both of these,
seems promising for predictive and knowledge-building pur-
poses.



7 Conclusion
In this paper we presented a novel framework which uses past
observations as contextual clues for predicting future events.
At the core of our algorithm lies the concept of saliency,
which causes past, important events to be used as context. We
described both how to produce predictions using associative
links between observations and how to learn such associa-
tions. Simple examples show that the algorithm preserves ba-
sic properties of Markov Models, such as the capacity to dis-
tinguish between differently ordered observations. We also
exemplified the potential of the algorithm to use contextual
information from anywhere in the past towards current pre-
dictions, which is the main failing of history-based models.
However, our algorithm does not require knowledge of the
true state of the world in order to make predictions, there-
fore reducing its complexity and making it more applicable to
general tasks. Although much remains to be done in order to
discover the advantages and flaws of the algorithm, we have
sketched out it potential uses. We propose a slightly different
view of observations, abstraction and contextual information,
which we hope might lead to improved performance of algo-
rithms.

We are currently in the process of testing the algorithm on
larger domains which may help understand its strengths and
weaknesses. Although it is not suited for environments where
very few observations are available and where they repeat of-
ten, natural environments provide a large variety of percep-
tions. The goal in such tasks is not necessarily perfectly ac-
curate prediction, but rather coherent actions. Our framework
may help in this respect by using context to drive prediction
and action, and by allowing for abstraction of knowledge and
the construction of high-level actions through association.

Acknowledgments
This work was supported in part by funding from NSERC and
CFI.

References
[Barto et al., 1981] Andrew G. Barto, Richard S. Sutton, and

Peter S. Brouwer. Associative search network: A rein-
forcement learning associative memory. Biological Cy-
bernetics, 40(3):201–211, 1981.

[Bose et al., 2005] Joy Bose, Steve B. Furber, and
Jonathan L. Shapiro. An associative memory for the
on-line recognition and prediction of temporal sequences.
In Proceedings of the International Joint Conference on
Neural Networks, 2005.

[Elman, 1990] Jeffrey L. Elman. Finding structure in time.
Cognitive Science, 14(2):179–211, 1990.

[Fahlman et al., 1983] Scott E. Fahlman, Geoffrey E. Hin-
ton, and Terrence J. Sejnowski. Massively parallel archi-
tectures for AI: NETL, Thistle, and Boltzmann machines.
In Proceedings of the National Conference on Artificial In-
telligence, 1983.

[Furber et al., 2004] S. B. Furber, W.J. Bainbridge, J.M.
Cumpstey, and S. Temple. Sparse distributed memory us-
ing n-of-m codes. Neural Networks, 10, 2004.

[Gopalratnam and Cook, 2007] K. Gopalratnam and D. J.
Cook. Online sequential prediction via incremental pars-
ing: The active LeZi algorithm. IEEE Intelligent Systems,
2007.

[Hinton et al., 2006] Geoffrey E. Hinton, S. Osindero, and
Y. Teh. A fast learning algorithm for deep belief nets. Neu-
ral Computation, 18:1527–1554, 2006.

[Hopfield, 1982] J. J. Hopfield. Neural networks and phys-
ical systems with emergent collective computational abil-
ities. Proceedings of the National Academy of Sciences
USA, 79(8):2554–2558, 1982.

[Kaelbling et al., 1998] Leslie Pack Kaelbling, Michael L.
Littman, and Anthony R. Cassandra. Planning and act-
ing in partially observable stochastic domains. Artificial
Intelligence, 101:99–134, 1998.

[Kanerva, 1993] Pentti Kanerva. Sparse distributed mem-
ory and related models. In M. Hassoum, editor, Associa-
tive Neural Memories, chapter 3. Oxford University Press,
1993.

[Littman et al., 2002] Michael L. Littman, Richard S. Sut-
ton, and Satinder Singh. Predictive representations of
state. In Advances in Neural Information Processing Sys-
tems 14, pages 1555–1561, 2002.

[McCallum, 1995] Andrew K. McCallum. Reinforcement
Learning with Selective Perception and Hidden State. PhD
thesis, University of Rochester, 1995.

[Rabiner, 1989] Lawrence R. Rabiner. A tutorial on hidden
markov models and selected applications in speech recog-
nition. Proceedings of the IEEE, 77(2):257–287, 1989.

[Rao and Fuentes, 1996] Rajesh P.N. Rao and Olac Fuentes.
Learning navigational behaviors using a predictive sparse
distributed memory. In MIT Press, editor, Fourth Interna-
tional Conference on Simulation of Adaptative Behavior,
1996.

[Ratitch and Precup, 2004] Bohdana Ratitch and Doina Pre-
cup. Sparse distributed memories for on-line value-based
reinforcement learning. In Proceedings of the 15th Euro-
pean Conference on Machine Learning, 2004.

[Sutton and Tanner, 2005] Richard S. Sutton and Brian Tan-
ner. Temporal-difference networks. In Advances in Neu-
ral Information Processing Systems 17, pages 1377–1384,
2005.

[Sutton, 1988] Richard S. Sutton. Learning to predict by
the methods of temporal differences. Machine Learning,
3(1):9–44, 1988.

[Sutton, 1995] Richard S. Sutton. TD models: Modeling the
world at a mixture of time scales. In Proceedings of the
Twelfth International Conference on Machine Learning,
pages 531–539, 1995.

[Taylor et al., 2007] G. Taylor, G. Hinton, and S. Roweis.
Modelling human motion using binary latent variables. In
Advances in Neural Information Processing Systems 19,
2007.


