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Abstract

Bellemare et al. (2016) introduced the notion of
a pseudo-count, derived from a density model,
to generalize count-based exploration to non-
tabular reinforcement learning. This pseudo-
count was used to generate an exploration bonus
for a DQN agent and combined with a mixed
Monte Carlo update was sufficient to achieve
state of the art on the Atari 2600 game Mon-
tezuma’s Revenge. We consider two questions
left open by their work: First, how important is
the quality of the density model for exploration?
Second, what role does the Monte Carlo update
play in exploration? We answer the first question
by demonstrating the use of PixelCNN, an ad-
vanced neural density model for images, to sup-
ply a pseudo-count. In particular, we examine the
intrinsic difficulties in adapting Bellemare et al.’s
approach when assumptions about the model are
violated. The result is a more practical and gen-
eral algorithm requiring no special apparatus. We
combine PixelCNN pseudo-counts with different
agent architectures to dramatically improve the
state of the art on several hard Atari games. One
surprising finding is that the mixed Monte Carlo
update is a powerful facilitator of exploration in
the sparsest of settings, including Montezuma’s
Revenge.

1. Introduction

Exploration is the process by which an agent learns about
its environment. In the reinforcement learning framework,
this involves reducing the agent’s uncertainty about the
environment’s transition dynamics and attainable rewards.
From a theoretical perspective, exploration is now well-
understood (e.g. Strehl & Littman, 2008; Jaksch et al.,
2010; Osband et al., 2016), and Bayesian methods have
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been successfully demonstrated in a number of settings
(Deisenroth & Rasmussen, 2011; Guez et al., 2012). On the
other hand, practical algorithms for the general case remain
scarce; fully Bayesian approaches are usually intractable in
large state spaces, and the count-based method typical of
theoretical results is not applicable in the presence of value
function approximation.

Recently, Bellemare et al. (2016) proposed the notion of
pseudo-count as a reasonable generalization of the tabu-
lar setting considered in the theory literature. The pseudo-
count is defined in terms of a density model p trained on
the sequence of states experienced by an agent:

N(z) = p(x)n(z),

where 7i(x) can be thought of as a total pseudo-count com-
puted from the model’s recoding probability p'(z), the
probability of z computed immediately after training on
x. As a practical application the authors used the pseudo-
counts derived from the simple CTS density model (Belle-
mare et al., 2014) to incentivize exploration in Atari 2600
agents. One of the main outcomes of their work was sub-
stantial empirical progress on the infamously hard game
MONTEZUMA’S REVENGE.

Their method critically hinged on several assumptions
regarding the density model: 1) the model should be
learning-positive, i.e. the probability assigned to a state x
should increase with training; 2) it should be trained on-
line, using each sample exactly once; and 3) the effective
model step-size should decay at a rate of n~!. Part of their
empirical success also relied on a mixed Monte Carlo/Q-
Learning update rule, which permitted fast propagation of
the exploration bonuses.

In this paper, we set out to answer several research ques-
tions related to these modelling choices and assumptions:

1. To what extent does a better density model give rise to
better exploration?

2. Can the above modelling assumptions be relaxed
without sacrificing exploration performance?

3. What role does the mixed Monte Carlo update play in
successfully incentivizing exploration?
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In particular, we explore the use of PixelCNN (van den
Oord et al.,, 2016b;a), a state-of-the-art neural density
model. We examine the challenges posed by this approach:

Model choice. Performing two evaluations and one model
update at each agent step (to compute p(x) and p’(x)) can
be prohibitively expensive. This requires the design of a
simplified — yet sufficiently expressive and accurate — Pix-
elCNN architecture.

Model training. A CTS model can naturally be trained
from sequentially presented, correlated data samples.
Training a neural model in this online fashion requires
more careful attention to the optimization procedure to pre-
vent overfitting and catastrophic forgetting (French, 1999).

Model use. The theory of pseudo-counts requires the den-
sity model’s rate of learning to decay over time. Optimiza-
tion of a neural model, however, imposes constraints on the
step-size regime which cannot be violated without deterio-
rating effectiveness and stability of training.

The concept of intrinsic motivation has made a recent resur-
gence in reinforcement learning research, in great part
due to a dissatisfaction with e-greedy and Boltzmann poli-
cies. Of note, Tang et al. (2016) maintain an approximate
count by means of hash tables over features, which in the
pseudo-count framework corresponds to a hash-based den-
sity model. Houthooft et al. (2016) used a second-order
Taylor approximation of the prediction gain to drive explo-
ration in continuous control. As research moves towards
ever more complex environments, we expect the trend to-
wards more intrinsically motivated solutions to continue.

2. Background
2.1. Pseudo-Count and Prediction Gain

Here we briefly introduce notation and results, referring the
reader to (Bellemare et al., 2016) for technical details.

Let p be a density model on a finite space X, and p,, () the
probability assigned by the model to = after being trained
on a sequence of states z1,...,x,. Assume p,(z) > 0
for all z,n. The recoding probability p, (x) is then the
probability the model would assign to x if it were trained on
that same x one more time. We call p learning-positive if
pn(x) > pp(x) forall zq,...,2,,x € X. The prediction
gain (PG) of p is

PGy (z) = log py, (z) — log py (). (D

A learning-positive p implies PG,,(z) > 0 for all z € X.
For learning-positive p, we define the pseudo-count as

L pa@)(1 = (@)
Nnl®) = ) (@)

derived from postulating that a single observation of x € X

should lead to a unit increase in pseudo-count:

N,(z)+1
/ p—

N, (2)

pn(x) =T

where 7 is the pseudo-count total. The pseudo-count gen-
eralizes the usual state visitation count function N, (z).
Under certain assumptions on p,, pseudo-counts grow
approximately linearly with real counts. Crucially, the
pseudo-count can be approximated using the prediction
gain of the density model:

N —1
N () = (PG —1)

Its main use is to define an exploration bonus. We consider
a reinforcement learning (RL) agent interacting with an en-
vironment that provides observations and extrinsic rewards
(see Sutton & Barto, 1998, for a thorough exposition of the
RL framework). To the reward at step n we add the bonus

() = (Na(2) 712,

which incentivizes the agent to try to re-experience sur-
prising situations. Quantities related to prediction gain
have been used for similar purposes in the intrinsic moti-
vation literature (Lopes et al., 2012), where they measure
an agent’s learning progress (Oudeyer et al., 2007). Al-
though the pseudo-count bonus is close to the prediction
gain, it is asymptotically more conservative and supported
by stronger theoretical guarantees.

2.2. Density Models for Images

The CTS density model (Bellemare et al., 2014) is based
on the namesake algorithm, Context Tree Switching (Ve-
ness et al., 2012), a Bayesian variable-order Markov model.
In its simplest form, the model takes as input a 2D image
and assigns to it a probability according to the product of
location-dependent L-shaped filters, where the prediction
of each filter is given by a CTS algorithm trained on past
images. In Bellemare et al. (2016), this model was ap-
plied to 3-bit greyscale, 42 x 42 downsampled Atari 2600
frames (Fig. 1). The CTS model presents advantages in
terms of simplicity and performance but is limited in ex-
pressiveness, scalability, and data efficiency.

In recent years, neural generative models for images have
achieved impressive successes in their ability to generate
diverse images in various domains (Kingma & Welling,
2013; Rezende et al., 2014; Gregor et al., 2015; Good-
fellow et al., 2014). In particular, van den Oord et al.
(2016b;a) introduced PixelCNN, a fully convolutional neu-
ral network composed of residual blocks with multiplica-
tive gating units, which models pixel probabilities condi-
tional on previous pixels (in the usual top-left to bottom-
right raster-scan order) by using masked convolution fil-
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Original Frame (160x210) 3bit Greyscale (42x42)

Figure 1. Atari frame preprocessing (Bellemare et al., 2016).

ters. This model achieved state-of-the-art modelling perfor-
mance on standard datasets, paired with the computational
efficiency of a convolutional feed-forward network.

2.3. Multi-Step RL Methods

A distinguishing feature of reinforcement learning is that
the agent “learns on the basis of interim estimates” (Sutton,
1996). For example, the Q-Learning update rule is

Q(7,a) + Q(z,a)
+a[r(x,a) + ymax, Q(z',d") — Q(z,a)],

o(z,a)

linking the reward r and next-state value function Q(z’, a’)
to the current state value function Q(x, a). This particular
form is the stochastic update rule with step-size a and in-
volves the TD-error §. In the approximate reinforcement
learning setting, such as when Q(x, a) is represented by a
neural network, this update is converted into a loss to be
minimized, most commonly the squared loss 62(x, a).

It is well known that better performance, both in terms of
learning efficiency and approximation error, is attained by
multi-step methods (Sutton, 1996; Tsitsiklis & van Roy,
1997). These methods interpolate between one-step meth-
ods (Q-Learning) and the Monte-Carlo update

o0

Qz,a) + Q(z,a) + « Z’ytr(xt, at) — Q(z,a)|,

t=0

O (z,a)

where xg, ag, z1,a1,... is a sample path through the en-
vironment beginning in (x, a). To achieve their success on
the hardest Atari 2600 games, Bellemare et al. (2016) used
the mixed Monte-Carlo update (MMC)

Q($>a) «— Q(mva) +a [(1 - B)(S(SC, a) + BéMC(xv a)] ’

with 8 € [0,1]. This choice was made for “computa-
tional and implementational simplicity”, and is a particu-
larly coarse multi-step method. A better multi-step method
is the recent Retrace(\) algorithm (Munos et al., 2016).
Retrace()\) uses a product of truncated importance sam-

pling ratios ¢y, ca, . .

o t
5RETRAC12(1'7 a) = Z'Yt (H Cs) 5(1715’ at)a
t=0 =1

effectively mixing in TD-errors from all future time steps.
Munos et al. showed that Retrace()) is safe (does not di-
verge when trained on data from an arbitrary behaviour pol-
icy), and efficient (makes the most of multi-step returns).

. to replace § with the error term

3. Using Pixel CNN for Exploration

As mentioned in the Introduction, the theory of using den-
sity models for exploration makes several assumptions that
translate into concrete requirements for an implementation:

(a) The density model should be trained completely on-
line, i.e. exactly once on each state experienced by the
agent, in the given sequential order.

(b) The prediction gain (PG) should decay at a rate n !

to ensure that pseudo-counts grow approximately lin-
early with real counts.

(c) The density model should be learning-positive.

Simultaneously, a partly competing set of requirements
are posed by the practicalities of training a neural density
model and using it as part of an RL agent:

(d) For stability, efficiency, and to avoid catastrophic for-
getting in the context of a drifting data distribution,
it is advantageous to train a neural model in mini-
batches, drawn randomly from a diverse dataset.

(e) For effective training, a certain optimization regime
(e.g. a fixed learning rate schedule) has to be followed.

(f) The density model must be computationally
lightweight, to allow computing the PG (two
model evaluations and one update) as part of every
training step of an RL agent.

We investigate how to best resolve these tensions in the
context of the Arcade Learning Environment (Bellemare
et al., 2013), a suite of benchmark Atari 2600 games.

3.1. Designing a Suitable Density Model

Driven by (f) and aiming for an agent with computational
performance comparable to DQN, we design a slim vari-
ant of the Pixel CNN network. Its core is a stack of 2 gated
residual blocks with 16 feature maps (compared to 15 resid-
ual blocks with 128 feature maps in vanilla PixelCNN). As
was done with the CTS model, images are downsampled to
42 x 42 and quantized to 3-bit greyscale. See Appendix A
for technical details.
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Figure 2. Left: PixelCNN log loss on FREEWAY, when trained online, on a random permutation (single use of each frame) or on
randomly drawn samples (with replacement, potentially using same frame multiple times) from the state sequence. To simulate the
effect of non-stationarity, the agent’s policy changes every 4K updates. All training methods show qualitatively similar learning progress
and stability. Middle: PixelCNN log loss over first 6K training frames on PONG. Vertical dashed lines indicate episode ends. The
coinciding loss spikes are the density model’s ‘surprise’ upon observing the distinctive green frame that sometimes occurs at the episode
start. Right: DQN-PixelCNN training performance on MONTEZUMA’S REVENGE as we vary learning rate and PG decay schedules.
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Figure 3. Model loss averaged over 10K frames, after 1M training
frames, for constant, n~*, and n~1/? learning rate schedules. The
smallest loss is achieved by a constant learning rate of 1073,

3.2. Training the Density Model

Instead of using randomized mini-batches, we train the
density model completely online on the sequence of experi-
enced states. Empirically we found that with minor tuning
of optimization hyper-parameters we could train the model
as robustly on a temporally correlated sequence of states as
on a sequence with randomized order (Fig. 2(left)).

Besides satisfying the theoretical requirement (a), com-
pletely online training of the density model has the advan-
tage that p!, = p,11, so that the model update performed
for computing the PG need not be reverted'.

Another more subtle reason for avoiding mini-batch up-
dates of the density model (despite (d)) is a practical op-
timization issue. The (necessarily online) computation of
the PG involves a model update and hence the use of an
optimizer. Advanced optimizers used with deep neural net-
works, like the RMSProp optimizer (Tieleman & Hinton,
2012) used in this work, are stateful, tracking running av-
erages of e.g. mean and variance of the model parameters.
If the model is additionally trained from mini-batches, the
two streams of updates may show different statistical char-

'The CTS model allows querying the PG cheaply, without in-
curring an actual update of model parameters.

acteristics (e.g. different gradient magnitudes), invalidating
the assumptions underlying the optimization algorithm and
leading to slower or unstable training.

To determine a suitable online learning rate schedule, we
train the model on a sequence of 1M frames of experience
of a random-policy agent. We compare the loss achieved by
training procedures following constant or decaying learn-
ing rate schedules, see Fig. 3. The lowest final training loss
is achieved by a constant learning rate of 0.001 or a de-
caying learning rate of 0.1 - n~ /2. We settled our choice
on the constant learning rate schedule as it showed greater
robustness with respect to the choice of initial learning rate.

PixelCNN rapidly learns a sensible distribution over state
space. Fig. 2(left) shows the model’s loss decaying as
it learns to exploit image regularities. Spikes in its loss
function quickly start to correspond to visually meaning-
ful events, such as the starts of episodes (Fig. 2(middle)).
A video of early density model training is provided in
http://youtu.be/T6iaa8Z4eyE.

Figure 4. Samples after 25K steps. Left: CTS, right: PixelCNN.

3.3. Computing the Pseudo-Count

From the previous section we obtain a particular learning
rate schedule that cannot be arbitrarily modified without
deteriorating the model’s training performance or stability.
To achieve the required PG decay (b), we instead replace
PG, by ¢,, - PG,, with a suitably decaying sequence c,,.
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In experiments comparing actual agent performance we
empirically determined that in fact the constant learning
rate 0.001, paired with a PG decay ¢,, = ¢ - n~'/2, obtains
the best exploration results on hard exploration games like
MONTEZUMA’S REVENGE, see Fig. 2(right). We find the
model to be robust across 1-2 orders of magnitude for the
value of ¢, and informally determine ¢ = 0.1 to be a sen-
sible configuration for achieving good results on a broad
range of Atari 2600 games (see also Section 7).

Regarding (c), it is hard to ensure learning-positiveness for
a deep neural model, and a negative PG can occur when-
ever the optimizer ‘overshoots’ a local loss minimum. As
a workaround, we threshold the PG value at 0. To summa-
rize, the computed pseudo-count is

N, (z) = (CXp (c nY2. (PGn(;z:))+) — 1)_1 .

4. Exploration in Atari 2600 Games

Having described our pseudo-count friendly adaptation of
PixelCNN, we now study its performance on Atari games.
To this end we augment the environment reward with a
pseudo-count exploration bonus, yielding the combined re-
ward r(z, a) + (N, (x))~1/2. As usual for neural network-
based agents, we ensure the total reward lies in [—1, 1] by
clipping larger values.

4.1. DQN with Pixel CNN Exploration Bonus

Our first set of experiments provides the PixelCNN explo-
ration bonus to a DQN agent (Mnih et al., 2015)%. At each
agent step, the density model receives a single frame, with
which it simultaneously updates its parameters and outputs
the PG. We refer to this agent as DON-PixelCNN.

The DON-CTS agent we compare against is derived from
the one in (Bellemare et al., 2016). For better compara-
bility, it is trained in the same online fashion as DQN-
PixelCNN, i.e. the PG is computed whenever we train the
density model. By contrast, the original DQN-CTS queried
the PG at the end of each episode.

Unless stated otherwise, we always use the mixed Monte
Carlo update (MMC) for the intrinsically motivated
agents®, but regular Q-Learning for the baseline DQN.

Fig. 5 shows training curves of DQN compared to DQN-

*Unlike Bellemare et al. we use regular Q-Learning instead of
Double Q-Learning (van Hasselt et al., 2016), as our early exper-
iments showed no significant advantage of DoubleDQN with the
Pixel CNN-based exploration reward.

3The use of MMC in a replay-based agent poses a minor com-
plication, as the MC return is not available for replay until the end
of an episode. For simplicity, in our implementation we disregard
this detail and set the MC return to O for transitions from the most
recent episode.
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Figure 5. DQN, DQN-CTS and DQN-PixelCNN on hard explo-
ration games (top) and easier ones (bottom).
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Figure 6. Improvements (in % of AUC) of DQN-PixelCNN and
DQN-CTS over DQN in 57 Atari games. Annotations indicate
the number of hard exploration games with positive (right) and
negative (left) improvement, respectively.

CTS and DQN-PixelCNN. On the famous MONTEZUMA’S
REVENGE, both intrinsically motivated agents vastly out-
perform the baseline DQN. On other hard exploration
games (PRIVATE EYE; or VENTURE, appendix Fig. 15),
DQN-PixelCNN achieves state of the art results, substan-
tially outperforming DQN and DQN-CTS. The other two
games shown (ASTEROIDS, BERZERK) pose easier explo-
ration problems, where the reward bonus should not pro-
vide large improvements and may have a negative effect by
skewing the reward landscape. Here, DQN-PixelCNN be-
haves more gracefully and still outperforms DQN-CTS. We
hypothesize this is due to a qualitative difference between
the models, see Section 5.

Overall PixelCNN provides the DQN agent with a larger
advantage than CTS, and often accelerates or stabilizes
training even when not affecting peak performance. Out of
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57 Atari games, DQN-Pixel CNN outperforms DQN-CTS
in 52 games by maximum achieved score, and 51 by AUC
(methodology in Appendix B). See Fig. 6 for a high level
comparison (appendix Fig. 15 for full training graphs). The
greatest gains from using either exploration bonus are ob-
served in games categorized as hard exploration games in
the ‘taxonomy of exploration’ in (Bellemare et al., 2016,
reproduced in Appendix D), specifically in the most chal-
lenging sparse reward games (e.g. MONTEZUMA’S RE-
VENGE, PRIVATE EYE, VENTURE).

4.2. A Multi-Step RL Agent with Pixel CNN

Empirical practitioners know that techniques beneficial for
one agent architecture often can be detrimental for a dif-
ferent algorithm. To demonstrate the wide applicability
of the PixelCNN exploration bonus, we also evaluate it
with the more recent Reactor agent* (Gruslys et al., 2017).
This replay-based actor-critic agent represents its policy
and value function by a recurrent neural network and, cru-
cially, uses the multi-step Retrace()\) algorithm for policy
evaluation, replacing the MMC we use in DQN-PixelCNN.

To reduce impact on computational efficiency of this agent,
we sub-sample intrinsic rewards: we perform updates of
the PixeICNN model and compute the reward bonus on
(randomly chosen) 25% of all steps, leaving the agent’s re-
ward unchanged on other steps. We use the same PG decay
schedule of 0.1 /2, with n the number of model updates.
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Figure 7. Reactor/Reactor-PixelCNN and DQN/DQN-PixelCNN
training performance (averaged over 3 seeds).

Training curves for the Reactor/Reactor-PixelCNN agent
compared to DQN/DQN-PixelCNN are shown in Fig. 7.
The baseline Reactor agent is superior to the DQN agent,
obtaining higher scores and learning faster in about 50 out
of 57 games. It is further improved on a large fraction of
games by the Pixel CNN exploration reward, see Fig. 8 (full
training graphs in appendix Fig. 16).

The effect of the exploration bonus is rather uniform, yield-
ing improvements on a broad range of games. In particu-

“The exact agent variant is referred to as ‘3-LOO’ with § = 1.

lar, Reactor-PixelCNN enjoys better sample efficiency (in
terms of area under the curve, AUC) than vanilla Reactor.
We hypothesize that, like other policy gradient algorithms,
Reactor generally suffers from weaker exploration than its
value-based counterpart DQN. This aspect is much helped
by the exploration bonus, boosting the agent’s sample effi-
ciency in many environments.

% Improvement Reactor-PixelCNN over Reactor (by AUC)

B Easy exploration (40) 250%
Il Hard exploration, dense reward (10)

Il Hard exploration, sparse reward (7) 200%
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Figure 8. Improvements (in % of AUC) of Reactor-PixelCNN
over Reactor in 57 Atari games.

However, on hard exploration games with sparse rewards,
Reactor seems unable to make full use of the exploration
bonus. We believe this is because, in very sparse settings,
the propagation of reward information across long hori-
zons becomes crucial. The MMC takes one extreme of
this view, directly learning from the observed returns. The
Retrace(\) algorithm, on the other hand, has an effective
horizon which depends on A and, critically, the truncated
importance sampling ratio. This ratio results in the discard-
ing of trajectories which are off-policy, i.e. unlikely under
the current policy. We hypothesize that the very goal of the
Retrace()\) algorithm to learn cautiously is what prevents it
from taking full advantage of the exploration bonus!

5. Quality of the Density Model

PixelCNN can be expected to be more expressive and accu-
rate than the less advanced CTS model, and indeed, sam-
ples generated after training are somewhat higher quality
(Fig. 4). However, we are not using the generative function
of the models when computing an exploration bonus, and
a better generative model does not necessarily give rise to
better probability estimates (Theis et al., 2016).
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Figure 9. PG on MONTEZUMA’S REVENGE (log scale).
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In Fig. 9 we compare the PG produced by the two mod-
els throughout 5K training steps. PixelCNN consistently
produces PGs lower than CTS. More importantly, its PGs
are smoother, exhibiting less variance between succes-
sive states, while showing more pronounced peaks at cer-
tain infrequent events. This yields a reward bonus that is
less harmful in easy exploration games, while providing a
strong signal in the case of novel or rare events.

Another distinguishing feature of PixelCNN is its non-
decaying step-size. The per-step PG never completely van-
ishes, as the model tracks the most recent data. This pro-
vides an unexpected benefit: the agent remains mildly sur-
prised by significant state changes, e.g. switching rooms in
MONTEZUMA’S REVENGE. These persistent rewards act
as milestones that the agent learns to return to. This is il-
lustrated in Fig. 10, depicting the intrinsic reward over the
course of an episode. The agent routinely revisits the right-
hand side of the torch room, not because it leads to reward
but just to “take in the sights”. A video of the episode is
provided at http://youtu.be/232tOUPKP0Q.)

-_.
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Figure 10. Intrinsic reward in MONTEZUMA’S REVENGE.

Lastly, PixelCNN’s convolutional nature is expected to be
beneficial for its sample efficiency. In Appendix C we com-
pare to a convolutional CTS and confirm that this explains
part, but not all of PixelCNN’s advantage over vanilla CTS.

6. Importance of the Monte Carlo Return

Like for DQN-CTS, the success of DQN-PixelCNN hinges
on the use of the mixed Monte Carlo update. The transient
and vanishing nature of the exploration rewards requires
the learning algorithm to latch on to these rapidly. The
MMC serves this end as a simple multi-step method, help-
ing to propagate reward information faster. An additional
benefit lies in the fact that the Monte Carlo return helps
bridging long horizons in environments where rewards are
far apart and encountered rarely. On the other hand, it is

3 Another agent video on the game PRIVATE EYE can be found
athttp://youtu.be/kNyFygeUa2E.
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Figure 11. Top: games where MMC completely explains the im-
proved/decreased performance of DQN-PixelCNN compared to
DQN. Bottom-left: MMC and Pixel CNN show additive benefits.

Bottom-right: hard exploration, sparse reward game — only com-
bining MMC and PixelCNN bonus achieves training progress.

important to note that the Monte Carlo return’s on-policy
nature increases variance in the learning algorithm, and can
prevent the algorithm’s convergence to the optimal policy
when training off-policy. It can therefore be expected to
adversely affect training performance in some games.

To distill the effect of the MMC on performance, we com-
pare all four combinations of DQN with/without Pixel CNN
exploration bonus and with/without MMC. Fig. 11 shows
the performance of these four agent variants (graphs for all
games are shown in Fig. 17). These games were picked to
illustrate several commonly occurring cases:

e MMC speeds up training and improves final perfor-
mance significantly (examples: BANK HEIST, TIME
PILOT). In these games, MMC alone explains most or
all of the improvement of DQN-Pixel CNN over DQN.

e MMC hurts performance (examples: MS. PAC-MAN,
BREAKOUT). Here too, MMC alone explains most of
the difference between DQN-PixelCNN and DQN.

e MMC and Pixel CNN reward bonus have a compound-
ing effect (example: H.E.R.O.).

Most importantly, the situation is rather different when we
restrict our attention to the hardest exploration games with
sparse rewards. Here the baseline DQN agent fails to make
any training progress, and neither Monte Carlo return nor
the exploration bonus alone provide any significant benefit.
Their combination however grants the agent rapid training
progress and allows it to achieve high performance.

One effect of the exploration bonus in these games is to
provide a denser reward landscape, enabling the agent to
learn meaningful policies. Due to the transient nature of
the exploration bonus, the agent needs to be able to learn
from this reward signal faster than regular one-step meth-
ods allow, and MMC proves to be an effective solution.
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Figure 12. DQN-PixelCNN, hard exploration games, different PG scales c - n~ 2. PG, (¢ =0.1,1,10) (5 seeds each).

7. Pushing the Limits of Intrinsic Motivation

In this section we explore the idea of a ‘maximally curious’
agent, whose reward function is dominated by the explo-
ration bonus. For that we increase the PG scale, previously
chosen conservatively to avoid adverse effects on easy ex-
ploration games.

Fig. 12 shows DQN-PixelCNN performance on the hardest
exploration games when the PG scale is increased by 1-
2 orders of magnitude. The algorithm seems fairly robust
across a wide range of scales: the main effect of increasing
this parameter is to trade off exploration (seeking maximal
reward) with exploitation (optimizing the current policy).

As expected, a higher PG scale translates to stronger ex-
ploration: several runs obtain record peak scores (900 in
GRAVITAR, 6,600 in MONTEZUMA’S REVENGE, 39,000
in PRIVATE EYE, 1,500 in VENTURE) surpassing the state
of the art by a substantial margin (for previously published
results, see Appendix D). Aggressive scaling speeds up the
agent’s exploration and achieves peak performance rapidly,
but can also deteriorate its stability and long-term perfor-
mance. Note that in practice, because of the non-decaying
step-size the PG does not vanish. After reward clipping,
an overly inflated exploration bonus can therefore become
essentially constant, no longer providing a useful intrinsic
motivation signal to the agent.

Another way of creating an entirely curiosity-driven agent
is to ignore the environment reward altogether and train
based on the exploration reward only, see Fig. 13. Remark-
ably, the curiosity signal alone is sufficient to train a high-
performing agent (measured by environment reward!).

It is worth noting that agents with exploration bonus seem
to ‘never stop exploring’: for different seeds, the agents
make learning progress at very different times during train-
ing, a qualitative difference to vanilla DQN.

8. Conclusion

We demonstrated the use of Pixel CNN for exploration and
showed that its greater accuracy and expressiveness trans-
late into a more useful exploration bonus than that obtained
from previous models. While the current theory of pseudo-
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Figure 13. DQN-PixelCNN trained from intrinsic reward only
(3 seeds for each configuration).

counts puts stringent requirements on the density model,
we have shown that PixelCNN can be used in a simpler and
more general setup, and can be trained completely online.
It also proves to be widely compatible with both value-
function and policy-based RL algorithms.

In addition to pushing the state of the art on the hardest
exploration problems among the Atari 2600 games, Pixel-
CNN improves speed of learning and stability of baseline
RL agents across a wide range of games. The quality of its
reward bonus is evidenced by the fact that on sparse reward
games, this signal alone suffices to learn to achieve signifi-
cant scores, creating a truly intrinsically motivated agent.

Our analysis also reveals the importance of the Monte
Carlo return for effective exploration. The comparison with
more sophisticated but fixed-horizon multi-step methods
shows that its significance lies both in faster learning in the
context of a useful but transient reward function, as well as
bridging reward gaps in environments where extrinsic and
intrinsic rewards are, or quickly become, extremely sparse.
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